首页 | 本学科首页   官方微博 | 高级检索  
     


Extended binding site of ricin B lectin for oligosaccharide recognition
Authors:Ganguly Debabani  Mukhopadhyay Chaitali
Affiliation:Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700 009, India.
Abstract:The plant lectin ricin B chain binds oligosaccharide with more affinity than the mono- or disaccharide ligands. The experiments indicated that a biantennary oligosaccharide could bind itself to any of the crystallographically established 1st or 2nd binding sites. After manual docking of either terminal galactose residues of the oligosaccharide in the 1st and 2nd binding sites of Ricin B and simulating the systems over nanosecond trajectories in implicit solvent, it was observed that the protein bound the oligosaccharide strongly through both its 1st and 2nd binding sites. Not only were the terminal galactose residues, several other residues of the oligosaccharide were involved in the binding scheme. Average gas phase energies were calculated molecular mechanically, solvation energies were calculated by Generalized Born model and the normal mode analysis was used to calculate the entropic contribution of binding. The entropy/enthalpy compensation has been observed for the protein-oligosaccharide interactions. The binding was found to be enthalpically favorable and compensating for the unfavorable entropic contribution. Comparison of the calculated free energy with the experimental data clearly suggests that binding is mono-dentate rather than bi-dentate through a single Gal-containing antenna.
Keywords:ricin B chain  oligosaccharide  MD simulation  MM‐GB/SA  binding free energy
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号