首页 | 本学科首页   官方微博 | 高级检索  
     


A kinetic model for the activated sludge process which considers diffusion and reaction in the microbial floc
Authors:Benefield L  Molz F
Affiliation:Department of Civil Engineering, Auburn University, Auburn, Alabama 36849.
Abstract:A mathematical model has been developed which describes substrate removal, oxygen utilization, and biomass production in an aggregated microbial suspension containing the substrate as a soluble biodegradable material and a uniform floc size. It is applicable to both steady-state and transient conditions. The model, consisting of three partial differential equations and two ordinary differential equations, takes into account the flow pattern in the reactor, intraparticle mass transport of oxygen and substrate, and biochemical reaction by individual cells embedded in the floc. Efficient numerical solution of the coupled nonlinear equations is obtained using an implicit finite difference approach for both the reactor and floc equations. A convergent solution is realized through block interation utilizing the tridiagonal algorithm. Results indicate that a unifying theory of activated sludge dynamics will have to consider coupling between floc chemical kinetics and changes in the bulk liquid characteristics. Floc size emerges as an important influence on system performance. It appears necessary to distinguish between a system response caused by diffuslonal resistances and nutrient limitations within the floc and a response caused by physiological adaption when analyzing the transient behavior of an activated sludge process. Future research should be devoted to rigorous laboratory determinations of model parameters along with extensions to include limitations of nutrients other than orgabnic carbon and oxygen.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号