首页 | 本学科首页   官方微博 | 高级检索  
   检索      


L-NAME differentially alters ventilatory behavior in Sprague-Dawley and Brown Norway rats.
Authors:Shyam Subramanian  Bernadette Erokwu  Fang Han  Thomas E Dick  Kingman P Strohl
Institution:Department of Medicine, Case Western Reserve University, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, USA.
Abstract:Nitric oxide (NO) is a regulating factor in respiration. The question was whether NO synthase (NOS) blockade would affect posthypoxic ventilatory behavior similarly in two rat strains with known differences in steady-state hypoxic and hypercapnic responses and in posthypoxic ventilatory behavior. Ventilatory behavior respiratory frequency (f) and minute ventilation (VE)] was measured by body plethysmography on unanesthetized, unrestrained adult male Sprague-Dawley (SD; n = 8) and Brown Norway rats (BN; n = 8) at baseline and 1 min after rapid transition to 100% O(2) after 5 min of isocapnic hypoxia (10% O(2)-3% CO(2)-balance N(2)). Testing was performed 30 min after intraperitoneal injection of either saline (vehicle) or 100 mg/kg of N(G)-nitro-L-arginine methyl ester (L-NAME). Resting f and VE increased after L-NAME in both strains, more markedly in SD compared with BN (77 vs. 47% for f, and 42 vs. 16% for VE, respectively; P < 0.05). With vehicle, posthypoxic f and VE decline (Dejours phenomenon) was present only in BN and was absent in SD. With L-NAME, the Dejours phenomena were still present in BN but also were apparent in SD (f: 95.3 vs. 134.4 beats/min at baseline; VE: 66.3 vs. 88.8 ml/min at baseline; P < 0.05). Thus NOS blockade results in a strain-specific alteration in resting ventilation and uncovers the Dejours phenomenon in the SD strain.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号