首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Stress fiber and cleavage furrow formation in living cells microinjected with fluorescently labeled alpha-actinin
Authors:J M Sanger  B Mittal  M B Pochapin  J W Sanger
Abstract:alpha-Actinins, isolated from muscle and nonmuscle sources and labeled with various fluorescent dyes, were microinjected into living PtK2 cells during interphase to observe the reformation of stress fibers following cell division. Fluorescently labeled ovalbumin and bovine serum albumin were also injected as control proteins. alpha-Actinin was incorporated into stress fibers within 5 minutes after injection and remained present in the fibers for up to 11 days. The pattern of incorporation was the same regardless of whether the alpha-actinin was isolated from muscle or nonmuscle tissues or whether it was labeled with fluorescein, Lucifer Yellow, or rhodamine dyes. In contrast, neither labeled ovalbumin nor bovine serum albumin were incorporated into stress fibers. When the injected cells entered prophase, all stress fibers disassembled, resulting in a distribution of the fluorescent alpha-actinin throughout the cytoplasm. During cytokinesis, the fluorescent alpha-actinin was concentrated in the broad area between the separated chromosomes and along the edge of the cell in the cleavage area. Within 10 minutes after the completion of cleavage, the first fluorescent stress fibers reformed parallel to the spreading edges of the daughter cells and in close association with the midbody with a concomitant loss of alpha-actinin in the former cleavage furrow. Additional fibers formed adjacent to these first stress fibers. In some cases, new stress fibers formed between two existing stress fibers and some stress fibers moved up to 4 micron apart from one another in the course of 2 hours. Thus, fluorescent alpha-actinin, injected into living cells, undergoes the same cyclical changes in distribution as endogenous alpha-actinin during the cell cycle: from stress fibers to cleavage furrow and back to stress fibers.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号