首页 | 本学科首页   官方微博 | 高级检索  
     


The synthesis of exopolysaccharide by Klebsiella aerogenes membrane preparations and the involvement of lipid intermediates
Authors:I. W. Sutherland and Mary Norval
Affiliation:Department of General Microbiology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JG, U.K.
Abstract:1. Membrane preparations from Klebsiella aerogenes type 8 were shown to transfer glucose and galactose from their uridine diphosphate derivatives to a lipid and to polymer. The ratio of glucose to galactose transfer in both cases was 1:2. This is the same ratio in which these sugars occur in native polysaccharide. Galactose transfer was dependent on prior glucosylation of the lipid. Mutants were obtained lacking (a) glucosyltransferase and (b) galactosyltransferase. The transferase activities in a number of non-mucoid mutants was examined. 2. Glucose transfer was partially inhibited by uridine monophosphate, and incorporation of either glucose or galactose into lipid was decreased in the presence of uridine diphosphate. The sugars are thought to be linked to a lipid through a pyrophosphate bond, and treatment of the lipid intermediates with phenol yielded water-soluble compounds. These could be dephosphorylated with alkaline phosphatase. Transfer of glucuronic acid to lipid or polymer from uridine diphosphate glucuronic acid was much lower than that of the other two sugars. 3. The fate of sugars incorporated into polymer was also followed. Some conversion of glucose into galactose and glucuronic acid occurred. Mutants unable to transfer glucose or galactose to lipid were unable to form polymer. Other mutants capable of lipid glycosylation were in some cases unable to form polymer. A model for capsular polysaccharide synthesis is proposed and its similarity to the formation of other polymers outside the cell membrane is discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号