首页 | 本学科首页   官方微博 | 高级检索  
     


Understanding enzyme behavior in a crowded scenario through modulation in activity,conformation and dynamics
Authors:Harshita Rastogi  Pramit K. Chowdhury
Abstract:Macromolecular crowding, inside the physiological interior, modulates the energy landscape of biological macromolecules in multiple ways. Amongst these, enzymes occupy a special place and hence understanding the function of the same in the crowded interior is of utmost importance. In this study, we have investigated the manner in which the multidomain enzyme, AK3L1 (PDB ID: 1ZD8), an isoform of adenylate kinase, has its features affected in presence of commonly used crowders (PEG 8, Dextran 40, Dextran 70, and Ficoll 70). Michaelis Menten plots reveal that the crowders in general enhance the activity of the enzyme, with the Km and Vmax values showing significant variations. Ficoll 70, induced the maximum activity for AK3L1 at 100 g/L, beyond which the activity reduced. Ensemble FRET studies were performed to provide insights into the relative domain (LID and CORE) displacements in presence of the crowders. Solvation studies reveal that the protein matrix surrounding the probe CPM (7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin) gets restricted in presence of the crowders, with Ficoll 70 providing the maximum rigidity, the same being linked to the decrease in the activity of the enzyme. Through our multipronged approach, we have observed a distinct correlation between domain displacement, enzyme activity and associated dynamics. Thus, keeping in mind the complex nature of enzyme activity and the surrounding bath of dense soup that the biological entity remains immersed in, indeed more such approaches need to be undertaken to have a better grasp of the “enzymes in the crowd”.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号