首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The effect of diabetes, nutritional factors, and sex on rat liver and kidney mevalonate kinase, mevalonate-5-phosphate kinase, and mevalonate-5-pyrophosphate decarboxylase
Authors:A M Jabalquinto  E Cardemil
Institution:Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824 U.S.A.
Abstract:Isopycnic sucrose gradient separation of rat liver organelles revealed the presence of two distinct branched-chain α-keto acid decarboxylase activities; a mitochondrial activity, which decarboxylates the three branched-chain α-keto acids and requires CoA and NAD+ and a cytosolic activity, which decarboxylates α-ketoisocaproate, but not α-ketoisovalerate, or α-keto-β-methylvalerate. The latter enzyme does not require added CoA or NAD+. Assay conditions for the cytosolic α-ketoisocaproate decarboxylase activity were optimized and this activity was partially characterized. In rat liver cytosol preparations this activity has a pH optimum of 6.5 and is activated by 1.5 m ammonium sulfate. The decarboxylase activity has an apparent Km of 0.03 mm for α-ketoisocaproate when optimized assay conditions are employed. Phenylpyruvate is a very potent inhibitor. α-Ketoisovalerate, α-keto-β-methylvalerate, α-ketobutyrate, and α-ketononanoate also inhibit the α-ketoisocaproate decarboxylase activity. The data indicate that the soluble α-ketoisocaproate decarboxylase is an oxidase. Rat liver cytosol preparations consumed oxygen when either α-ketoisocaproate or α-keto-γ-methiolbutyrate were added. None of the other α-keto acids tested stimulated oxygen consumption. 1-14C-Labeled α-keto-γ-methiolbutyrate is also decarboxylated by cytosol preparations. The α-ketoisocaproate oxidase was purified 20-fold from a 70,000g supernatant fraction of a rat liver homogenate. In these preparations the activity was increased 4-fold by the addition of dithiothreitol, ferrous iron, and ascorbate. The major product of this enzyme activity is β-hydroxyisovalerate. Isovalerate is not a free intermediate in the reaction. The data indicate an alternative pathway for metabolism of α-ketoisocaproate which produces β-hydroxyisovalerate.
Keywords:Author to whom correspondence should be sent: Unidad de Bioquímica  Facultad de Medicina Occidente  Universidad de Chile  Casilla 10455  Santiago  Chile  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号