首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Fast and slow excitation of inhibitory cells in the CA3 region of the hippocampus
Authors:Jean-Christophe Poncer  Richard Miles
Abstract:Pyramidal cells form excitatory synaptic connections with local inhibitory neurons in the hippocampus. This recurrent synapse plays a crucial stabilizing role in the control of hippocampal activity, since it transforms pyramidal cell population. Using a combination of dual recording from presynaptic and postsynaptic cells and anatomical techniques, we show that these synaptic connections often comprise a single site for liberation of excitatory transmitter. The resulting excitatory postsynaptic potentials (EPSCs) have a fast time course and a similar amplitude to miniature EPSCs recorded in tetrodotoxin and cobalt. In contrast, activation of metabotropic glutamate receptors (mGluRs) by transmitter liberated during repetitive activation of these synapses produces an excitation with a much slower time course. In addition to somatodendritic mGluRs, which excite inhibitory cells, a different species of mGluR is present on inhibitory cell terminals. This mGluR is activated by higher concentrations of the agonist t-1-amino-cyclopentyl–1,3-decarboxylate and acts to reduce γ-aminobutyric acid release. mGluRs, thus, have a dual action to enhance and to depress synaptic inhibition in the hippocampus. © 1995 John Wiley & Sons, Inc.
Keywords:hippocampus  inhibition  excitation  synapse  metabotropic glutamate receptor
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号