首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Histamine Receptor and its Regulation of Energy Metabolism
Authors:Toshiie Sakata
Abstract:In a series of studies on brain functions of histamine, probes to manipulate activities of histaminergic neuronal systems were applied to assess histaminergic function in non-obese normal, and lean and obese Zucker rats. Food intake was suppressed by both activation of H1-receptors and inhibition of H3-receptors in the ventromedial hypothalamic nucleus (VMH) and the paraventricular nucleus, each of which is a satiety center. Feeding circadian rhythm was decreased in its amplitude through histaminergic modulation in the hypothalamus. Histamine neurons in the mesencephalic trigeminal nucleus (Me5) were involved in regulation of masticatory functions, particularly eating speed, while histamine-containing neurons in the VMH controlled intake volume of meals. Energy deficiency in the brain enhanced satiation through histaminergic activation of VMH neurons, which in turn produced glycogenolysis in the hypothalamus to maintain homeostatic control of glucose supply. A very-low-calorie conventional Japanese diet, which is a fiber rich and low energy food source, enhanced satiation by increased mastication and because of the low energy supply of the diet. Hypothalamic histamine neurons were activated by high ambient temperature and also by interleukin-1β, an endogenous pyrogen, to maintain homeostatic thermoregulation. Behavioral and metabolic abnormalities of Zucker obese rats were mediated by a deficit in hypothalamic neuronal histamine, and the Zucker rat was evaluated as an animal model of histamine deficiency. Transplantation of the lean fetal hypothalamus into the third cerebroventricle of host obese Zuckers attenuated the abnormalities.
Keywords:Hypothalamic neuronal histamine  feeding circadian rhythm  mastication through Me5  thermoregulation and interleukin-1β    Icv transplantation of hypothalamus
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号