首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Metabolic engineering of a non-allosteric citrate synthase in an Escherichia coli citrate synthase mutant
Authors:Claudia T Evans
Abstract:This study examined the organization of the Krebs tricarboxylic acid (TCA) cycle by metabolic engineering and high-resolution 13C NMR. The oxidation of 1,2,3-13C]propionate to glutamate via the TCA cycle was measured in wild-type (WT) and a citrate synthase mutant (CS?) strain of Escherichia coli transformed with allosteric E. coli citrate synthase (ECCS) or non-allosteric pig citrate synthase (PCS). The 13C fractional enrichment in glutamate C-2, C-3, and C-4 in ECCS and PCS were similar; although quantitative differences in total citrate synthase activity and total C-4 labeling of glutamate were observed in ECCS and PCS. Allosteric ECCS cells contained 10-fold less total enzyme activity than PCS but only 50% less total labeling in glutamate C-4 and equivalent doubling times. The observed spectra were mathematically fitted using an iterative procedure(TCACALC) and yielded an acetate/succinyl-CoA flux ratio of 10 for both ECCS and PCS, a result that is in agreement with the isotopomer analyses of the 13C spectra of cells presented with 3-13C] propionate or 2-13C]propionate. The results are consistent with the presence of an allosteric citrate synthase in ECCS and a non-allosteric citrate synthase in PCS. The former maintains TCA cycle flux via alternative propionate pathways activated by positive allosteric mechanisms and the latter via elevated enzyme levels.
Keywords:citrate synthase  TCA cycle  13C NMR  allosteric control
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号