首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Trafficking of Dietary Fat in Lean Rats
Authors:Daniel H Bessesen  Connie L Rupp  Robert H Eckel
Abstract:BESSESEN, DANIEL H, CONNIE L RUPP AND ROBERT H ECKEL. Trafficking of dietary fat in lean rats. Obes Res. 1995;3:191–203. Despite increasing interest in the role that fuel partitioning plays in determining body composition, the relative importance of oxidative versus storage pathways in the clearance of dietary fat remains unclear. A widely held view is that the primary destination of chylomicron triglyceride fatty acids (TGFA) is adipose tissue, and the primary source of lipid fuel for skeletal muscle is non-esterified fatty acids (NEFA). An alternate view is that muscle, not adipose tissue, is the primary site of TGFA clearance. This view is supported by estimates of the total lipoprotein lipase content of muscle and adipose tissue. To directly study the partitioning of dietary fat between oxidation and storage, 14C-labeled oleic acid was fed to Sprague Dawley rats and its metabolic fate followed over 30 days. Two hours after ingestion, more than 3.5 times as much label was found in skeletal muscle tissue (2.42 ± 0.45 nmols) and CO2 (0.25 ± 0.01 nmols) than was found in adipose tissue (0.71 ± 0.14 nmols). Intramuscular triglyceride was the lipid class most extensively labeled. After skeletal muscle, liver was the next most important site of TGFA clearance. Surprisingly a substantial quantity of label remained associated with the GI tract even 24 hours after ingestion. Between 2 and 10 days following ingestion there was a net decline in the C content of muscle, liver and GI tract, associated with a net rise in the 14C content of adipose tissue. These findings demonstrate: 1) the importance of skeletal muscle and liver in whole organism TGFA clearance, 2) the importance of intramuscular partitioning of lipid fuels between direct oxidation and storage as TG, 3) the potentially important role of the GI tract in the delivery of dietary fat to the circulation 10–24 hours following ingestion, and 4) the stability of adipose tissue as a storage site. The complex nature of the tissue-specific clearance of TGFA over time is perhaps better described by the term ‘trafficking’ than by the more commonly used term “partitioning.” Future studies of TGFA clearance combined with sampling of relevant tissues over time will provide insight into the specific roles that abnormalities in liver, muscle and adipose tissue TGFA metabolism play in the development of hypertriglyceridemic disorders and states of increased or reduced body weight.
Keywords:chylomicrons  skeletal muscle  adipose tissue  lipid oxidation  fuel partitioning  triglyceride  dietary fat  rat  gastrointestinal system  liver metabolism
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号