首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Temporal relationships between Ca store mobilization and Ca entry in an exocrine cell
Authors:TJ Shuttleworth  
Abstract:Consideration of the principal current models for agonist-induced activation of Ca2+ entry in electrically non-excitable cells suggests that it may be possible to distinguish between them on the basis of predicted differences in the temporal relationship(s) between intracellular Ca2+ release and the activation of Ca2+ entry. Measurements of changes in Ca2+]i and Mn2+ quench in individual exocrine cells from the avian nasal gland indicate that, whereas Ins(1,4,5)P3-induced release of intracellular Ca2+ occurs within 3–5 s, the increase in Mn2+ quench is delayed by some 20–30 s. Mn2+ quench rate is similarly increased by thapsigargin, and is blocked by SK&F 96365, indicating that the increased Mn2+ quench observed genuinely reflects agonist-enhanced activity of the divalent cation entry pathway normally traversed by Ca2+. Additional experiments indicate that the observed delay is not due to inhibition of this pathway by elevated Ca2+]i. Furthermore, the delay cannot be explained by the time required for Ins(1,3,4,5)P4 generation, which is essentially maximal within 10 s of agonist addition. It is concluded that the observed delay in the activation of the Ca2+ entry pathway is best explained by ‘capacitative’ models where increased entry requires the generation, and transmission to the plasma membrane, of an unknown messenger as a direct result of the depletion of intracellular Ca2+ stores.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号