首页 | 本学科首页   官方微博 | 高级检索  
     


Proton transport by bacteriorhodopsin in planar membranes assembled from air-water interface films
Authors:Korenbrot J I  Hwang S B
Affiliation:Department of Physiology, University of California School of Medicine, San Francisco 94143, USA.
Abstract:Bacteriorhodopsin, in known amounts and controlled orientation, is incorporated into planar membrane films. These films are formed by the sequential transfer of two air-water interface films onto a thin, hydrophilic, electrically conductive support cast from nitrocellulose. The films are easily accessible to electrical measurements and to control of the ionic milieu on either side of the membrane. The area of the assembled membrane films can be varied between 2.3 x 10(-2) cm2 and 0.7 cm2. Illumination of these films produces photocurrents, photovoltages, and changes in the pH of the surrounding medium. The peak amplitude of the photocurrent increases linearly with light intensity for dim lights, and it approaches a saturating value for brighter lights. In the linear range, the stoichiometry of transport is 0.65 +/- 0.06 protons/absorbed photon. The rate of transport is linearly proportional to light at all intensities tested. The amplitude and kinetics of the photovoltage measured are accurately predicted by the photocurrent generated and the passive electrical features of the film. Parallel measurements of pH and photocurrent reveal that the light-induced changes in pH are fully accounted for by the rate and amount of charge transport across the membrane. Preceding the transport of protons, a transient photovoltage is detected that exhibits no detectable latency, reaches peak in about 80 microseconds, and probably arises from light-induced intramolecular charge displacements.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号