首页 | 本学科首页   官方微博 | 高级检索  
     


Quantitative analysis of nucleic acid three-dimensional structures
Authors:Gendron P  Lemieux S  Major F
Affiliation:Département d'Informatique et de Recherche Opérationnelle, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada.
Abstract:A new computer program to annotate DNA and RNA three-dimensional structures, MC-Annotate, is introduced. The goals of annotation are to efficiently extract and manipulate structural information, to simplify further structural analyses and searches, and to objectively represent structural knowledge. The input of MC-Annotate is a PDB formatted DNA or RNA three-dimensional structure. The output of MC-Annotate is composed of a structural graph that contains the annotations, and a series of HTML documents, one for each nucleotide conformation and base-base interaction present in the input structure. The atomic coordinates of all nucleotides and the homogeneous transformation matrices of all base-base interactions are stored in the structural graph. Symbolic classifications of nucleotide conformations, using sugar puckering modes and nitrogen base orientations around the glycosyl bond, and base-base interactions, using stacking and hydrogen bonding information, are introduced. Peculiarity factors of nucleotide conformations and base-base interactions are defined to indicate their marginalities with all other examples. The peculiarity factors allow us to identify irregular regions and possible stereochemical errors in 3-D structures without interactive visualization. The annotations attached to each nucleotide conformation include its class, its torsion angles, a distribution of the root-mean-square deviations with examples of the same class, the list of examples of the same class, and its peculiarity value. The annotations attached to each base-base interaction include its class, a distribution of distances with examples of the same class, the list of examples of the same class, and its peculiarity value. The distance between two homogeneous transformation matrices is evaluated using a new metric that distinguishes between the rotation and the translation of a transformation matrix in the context of nitrogen bases. MC-Annotate was used to build databases of nucleotide conformations and base-base interactions. It was applied to the ribosomal RNA fragment that binds to protein L11, which annotations revealed peculiar nucleotide conformations and base-base interactions in the regions where the RNA contacts the protein. The question of whether the current database of RNA three-dimensional structures is complete is addressed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号