首页 | 本学科首页   官方微博 | 高级检索  
     


The reduction of putidaredoxin reductase by reduced pyridine nucleotides
Authors:P W Roome  J A Peterson
Affiliation:Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235.
Abstract:Putidaredoxin reductase (PdR), an FAD-containing protein, mediates the transfer of electrons from NADH to putidaredoxin in the cytochrome P-450cam-dependent oxidation of camphor. Using stopped-flow spectrophotometry, reduction of putidaredoxin reductase by NADH (70 microM) at 4 degrees C appeared to be a pseudo-first-order process with a rate constant in excess of 600 s-1. The reduction of putidaredoxin reductase by NADPH was much slower with a second-order rate constant of 530 s-1 M-1 at 4 degrees C. The reduction of the enzyme was monitored at several wavelengths: 455 nm to follow flavin reduction; 700 nm to follow the appearance of the long-wavelength charge-transfer complex; and 513 nm to detect the presence of a semiquinone form of the flavoprotein. There was no apparent semiquinone formation observed during reduction. The charge-transfer complex can be formed in the presence of NAD+, whereas, no charge-transfer band could be detected when PdR was reduced with NADPH. The titration of chemically or NADPH-reduced putidaredoxin reductase with either a stoichiometric or an excess amount of NAD+ resulted in the formation of a charge-transfer complex, indicating that the reduced form of PdR has a high affinity for NAD+ regardless of the method of reduction. The data presented indicate that putidaredoxin reductase is reduced without the formation of semiquinone intermediate and, upon reduction, forms a tight complex with NAD+. The Keq for the reduction of PdR by NADPH is 1.1 and the midpoint potential for this reaction is -317 +/- 5 mV.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号