首页 | 本学科首页   官方微博 | 高级检索  
     


Partitioning of nitrogen and biomass at a range of N-addition rates and their consequences for growth and gas exchange in two perennial grasses from inland dunes
Authors:René   G. A. Boot,Peter M. Schildwacht,Hans Lambers
Affiliation:Dept of Plant Ecology and Evolutionary Biology, Univ. of Utrecht, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.
Abstract:This paper describes the effects of nitrgen supply on the partitioning of biomass and nitrogen of Agrostis vinealis (L.) Schreber and Corynephorus canescens (L.) Beauv., two perennial grasses of dry, nutrient-poor inland dunes, and their consequences for growth and gas exchange. At a given plant nitrogen concentration (PNC) the two species allocate the same relative amount of dry matter and nitrogen to their leaves. However, A. vinealis allocates more dry matter and nitrogen to its roots and less to its above-ground support tissue than C. canescens . Both the leaf weight ratio and leaf nitrogen ratio increase with increasing PNC. Despite species-specific differences in growth form and leaf morphology, the leaf area ratio and specific leaf area of the two species are similar, both at high and low PNC. At intermediate nitrogen supply, and thus intemediate PNC, however, A. vinealis has a higher leaf area ratio and specific leaf area than C. canescens .
The two species exhibit a similar positive relationship when either the rate of net photosynthesis or the rate of shoot respiration are compared to the leaf nitrogen concentration, all expressed per unit leaf weight. The rate of net photosynthesis per unit Jeafnitrogen (PNUE) of the two species increases with decreasing leaf nitrogen concentration per unit leaf weight. C. canescens has a higher PNUE at low, and a lower PNUE at high leaf nitrogen concentration per unit leaf weight than A. vinealis . At non-limiting nitrogen supply, A. vinealis has a higher nitrogen productivity and net assimilation rate and a similar PNC and leaf area ratio as compared to C. canescens , which explains the higher relative growth rate (RGRmax) of A. vinealis. At growth-limiting nitrogen supply C. canescens achieves a similar relative growth rate at a lower PNC than A. vinealis.
Keywords:Agrostis vinealis    Corynephorus canescens    gas exchange    nitrogen    nitrogen productivity    partitioning    photosynthetic nitrogen use efficiency    relative growth rate
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号