首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Time-resolved detection of sensory rhodopsin II-transducer interaction
Authors:Inoue Keiichi  Sasaki Jun  Morisaki Masayo  Tokunaga Fumio  Terazima Masahide
Institution:Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
Abstract:The dynamics of protein conformational change of Natronobacterium pharaonis sensory rhodopsin II (NpSRII) and of NpSRII fused to cognate transducer (NpHtrII) truncated at 159 amino acid sequence from the N-terminus (NpSRII-DeltaNpHtrII) are investigated in solution phase at room temperature by the laser flash photolysis and the transient grating methods in real time. The diffusion coefficients of both species indicate that the NpSRII-DeltaNpHtrII exists in the dimeric form in 0.6% dodecyl-beta-maltopyranoside (DM) solution. Rate constants of the reaction processes in the photocycles determined by the transient absorption and grating methods agree quite well. Significant differences were found in the volume change and the molecular energy between NpSRII and NpSRII-DeltaNpHtrII samples. The enthalpy of the second intermediate (L) of NpSRII-DeltaNpHtrII is more stabilized compared with that of NpSRII. This stabilization indicates the influence of the transducer to the NpSRII structure in the early intermediate species by the complex formation. Relatively large molecular volume expansion and contraction were observed in the last two steps for NpSRII. Additional volume expansion and contraction were induced by the presence of DeltaNpHtrII. This volume change, which should reflect the conformational change induced by the transducer protein, suggested that this is the signal transduction process of the NpSRII-DeltaNpHtrII.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号