首页 | 本学科首页   官方微博 | 高级检索  
     


The Creatine Phosphoryltransfer Reaction in Iodoacetate-Poisoned Muscle
Authors:Francis D. Carlson and Alvin Siger
Abstract:The iodoacetate-nitrogen-poisoned muscle offers the possibility of studying the stoichiometry of the single muscle twitch since metabolic resynthesis by glycolysis and oxidative phosphorylation are blocked, and there remains as an energy source only the creatine phosphoryltransfer system, creatine phosphate reacting with adenosinediphosphate to give the triphosphate and creatine. It is shown, preparatory to a determination of the amount of phosphocreatine split in a single twitch, that iodoacetate does not inhibit creatine phosphoryltransferase at concentrations which block glycolysis. An analysis is developed which assumes that the transferase maintains the creatine phosphoryl transfer reaction in equilibrium following contraction, and further that the creatine phosporyltransfer reaction and the myokinase reaction are isolated in muscle. On the basis of this analysis and the data obtained, an estimate of the equilibrium constant of the creatine phosphoryl reaction in muscle is obtained which agrees with values determined in vitro. Using the estimated equilibrium constant, and the concentrations of creatine, creatine phosphate, and adenosinetriphosphate found, a value for the concentration of free adenosinediphosphate is obtained which is considerably less than that found by direct chemical analysis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号