首页 | 本学科首页   官方微博 | 高级检索  
     


The bifunctional role of aconitase in Streptomyces viridochromogenes Tü494
Authors:Ewelina Michta  Klaus Schad  Kai Blin  Regina Ort‐Winklbauer  Marc Röttig  Oliver Kohlbacher  Wolfgang Wohlleben  Eva Schinko  Yvonne Mast
Affiliation:1. Interfakult?res Institut für Mikrobiologie und Infektionsmedizin (IMIT), Mikrobiologie/Biotechnologie, Fakult?t für Biologie, Eberhard‐Karls‐Universit?t Tübingen, , 72076 Tübingen, Germany;2. Angewandte Bioinformatik, Wilhelm‐Schickard‐Institut für Computerwissenschaften, Eberhard‐Karls‐Universit?t Tübingen, , 72076 Tübingen, Germany
Abstract:In many organisms, aconitases have dual functions; they serve as enzymes in the tricarboxylic acid cycle and as regulators of iron metabolism. In this study we defined the role of the aconitase AcnA in Streptomyces viridochromogenes Tü494, the producer of the herbicide phosphinothricyl‐alanyl‐alanine, also known as phosphinothricin tripeptide or bialaphos. A mutant in which the aconitase gene acnA was disrupted showed severe defects in morphology and physiology, as it was unable to form any aerial mycelium, spores nor phosphinothricin tripeptide. AcnA belongs to the iron regulatory proteins (IRPs). In addition to its catalytic function, AcnA plays a regulatory role by binding to iron responsive elements (IREs) located on the untranslated region of certain mRNAs. A mutation preventing the formation of the [4Fe‐4S] cluster of AcnA eliminated its catalytic activity, but did not inhibit RNA‐binding ability. In silico analysis of the S. viridochromogenes genome revealed several IRE‐like structures. One structure is located upstream of recA, which is involved in the bacterial SOS response, and another one was identified upstream of ftsZ, which is required for the onset of sporulation in streptomycetes. The functionality of different IRE structures was proven with gel shift assays and specific IRE consensus sequences were defined. Furthermore, RecA was shown to be upregulated on post‐transcriptional level under oxidative stress conditions in the wild‐type strain but not in the acnA mutant, suggesting a regulatory role of AcnA in oxidative stress response.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号