首页 | 本学科首页   官方微博 | 高级检索  
     


Purification and biochemical properties of genetically defined malate dehydrogenase in maize
Authors:Ning-Sun Yang  John G. Scandalios
Affiliation:1. MSU/AEC Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48823 USA;2. Genetics Laboratory, Department of Biology, University of South Carolina, Columbia, South Carolina 29208 USA
Abstract:Malate dehydrogenase of maize exists in multiple molecular forms (isozymes). In strain W64A, two soluble forms (s-MDH), five mitochondrial forms (m-MDH), and two glyoxysomal forms (g-MDH) were found in etiolated seedlings. The s-MDHs and m-MDHs were prepared in highly purified form. Using these purified isozymes, experiments with reducing agents (100 mm mercaptoethanol), low pH (2.0), and high salt cocn (7.5 m guanidine-HCl), along with genetic data, have eliminated the possibility of conformational alterations as an explanation for MDH multiplicity in maize; the MDH isozymes are genetically determined. Biochemical properties for each of the seven MDH isozymes were examined. Molecular weight, pI, pH optimum, thermolability, and Km for oxaloacetate, malate, NAD, and NADH at different pH values were determined for each isozyme. Different kinetics of substrate inhibition (oxaloacetate) and coenzyme inhibition (NAD) were observed for the different isozymes. Effects of NAD analogs, chelating agents, reducing agents, metal ions, and TCA cycle acids on the enzymatic activity of these isozymes were tested. Based on the physical and kinetic properties observed, the maize malate dehydrogenase isozymes can be classified into four groups: s-MDH1; s-MDH2; the two most anodal m-MDHs; and the three most cathodal m-MDHs. Since strain W64A is highly inbred, our data along with our previous and simultaneous genetic analysis suggest that multiple genes are involved in the expression of maize malate dehydrogenase isozymes.
Keywords:Send reprint requests to J. G. Scandalios   Department of Biology   University of South Carolina   Columbia   SC 29208.
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号