首页 | 本学科首页   官方微博 | 高级检索  
     


Two types of hydrocarbon chain interdigitation in sphingomyelin bilayers
Authors:I W Levin  T E Thompson  Y Barenholz  C Huang
Abstract:Vibrational Raman spectroscopic experiments have been performed as a function of temperature on aqueous dispersions of synthetic DL-erythro-N-lignoceroylsphingosylphosphocholine [C(24):SPM], a racemic mixture of two highly asymmetric hydrocarbon chain length sphingomyelins. Raman spectral peak-height intensity ratios of vibrational transitions in the C-H stretching-mode region show that the C(24):SPM-H2O system undergoes two thermal phase transitions centered at 48.5 and 54.5 degrees C. Vibrational data for fully hydrated C(24):SPM are compared to those of highly asymmetric phosphatidylcholine dispersions. The Raman data are consistent with the plausible model that the lower temperature transition can be ascribed to the conversion of a mixed interdigitated gel state (gel II) to a partially interdigitated gel state (gel I) and that the higher temperature transition corresponds to a gel I----liquid-crystalline phase transition. The observation of a mixed interdigitated gel state (gel II) at temperatures below 48.5 degrees C implies that biological membranes may have lipid domains in which some of the lipid hydrocarbon chains penetrate completely across the entire hydrocarbon width of the lipid bilayer.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号