首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Some taste molecules and their solution properties.
Authors:S A Parke  G G Birch  R Dijk
Institution:Department of Food Science & Technology, University of Reading, Whiteknights, UK.
Abstract:The solution properties of a variety of different sapid substances from all four basic taste modalities, namely, sweet (n = 24), salty (n = 7), sour (n = 11) and bitter (n = 2), have been investigated. Some multisapophoric molecules, i.e. molecules exhibiting more than one taste, have also been included in the study in an attempt to define their properties in relation to the tastes they exhibit; eight sweet-bitter and three salty-bitter molecules were used. The density and sound velocity of their solutions in water have been measured and their apparent volumes, apparent compressibilities and compressibility hydration numbers calculated and compared. Apparent molar volumes (phi(v)) and apparent specific volumes (ASV) reflect the state of hydration of the molecules, and thus their extent of interaction with water structure. The range of ASVs reported are 0.13-0.49 cm3/g for salty molecules, 0.55-0.68 cm3/g for sweet molecules, 0.53-0.88 cm3/g for sweet-bitter molecules and a much wider range (0.16-0.85 cm3/g) for sour molecules. Isentropic apparent specific compressibilities range from -2.33 x 10(-5) to -8.06 x 10(-5) cm3/g x bar for salty molecules, -3.38 x 10(-7) to -2.34 x 10(-5) cm3/g x bar for sweet molecules, +6.35 x 10(-6) to -2.22 x 10(-5) cm3/g x bar for sweet-bitter molecules and +6.131 x 10(-6) to -2.99 x 10(-5) cm3/g x bar for sour molecules. Compressibility hydration numbers are also determinable from the measurements of isentropic compressibilities and these reflect the number of water molecules that are disturbed by the presence of the solutes in solution. This study also shows that it is possible to group isentropic apparent molar compressibility values by the taste quality exhibited by the molecules in the same order as for ASV.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号