首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The wobble hypothesis revisited: uridine-5-oxyacetic acid is critical for reading of G-ending codons
Authors:Näsvall S Joakim  Chen Peng  Björk Glenn R
Institution:S. Joakim Näsvall, Peng Chen, and Glenn R. Björk
Abstract:According to Crick's wobble hypothesis, tRNAs with uridine at the wobble position (position 34) recognize A- and G-, but not U- or C-ending codons. However, U in the wobble position is almost always modified, and Salmonella enterica tRNAs containing the modified nucleoside uridine-5-oxyacetic acid (cmo5U34) at this position are predicted to recognize U- (but not C-) ending codons, in addition to A- and G-ending codons. We have constructed a set of S. enterica mutants with only the cmo5U-containing tRNA left to read all four codons in the proline, alanine, valine, and threonine family codon boxes. From the phenotypes of these mutants, we deduce that the proline, alanine, and valine tRNAs containing cmo5U read all four codons including the C-ending codons, while the corresponding threonine tRNA does not. A cmoB mutation, leading to cmo5U deficiency in tRNA, was introduced. Monitoring A-site selection rates in vivo revealed that the presence of cmo5U34 stimulated the reading of CCU and CCC (Pro), GCU (Ala), and GUC (Val) codons. Unexpectedly, cmo5U is critical for efficient decoding of G-ending Pro, Ala, and Val codons. Apparently, whereas G34 pairs with U in mRNA, the reverse pairing (U34-G) requires a modification of U34.
Keywords:wobble hypothesis  translation  tRNA  modified nucleoside  decoding
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号