首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways
Authors:Giannone Grégory  Sheetz Michael P
Institution:Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
Abstract:Cell forces define cell morphology, alterations in which are caused by tyrosine kinase and phosphatase mutations, which implies a causal linkage. Recent studies have shown that phosphotyrosine signaling is involved in force sensing for cells on flat surfaces. Early force-dependent activation of Src family kinases by phosphatases or cytoskeleton stretch leads to the activation of downstream signaling. In addition, force generation by cells depends on a feedback mechanism between matrix rigidity or force generation and myosin contractility. Components of the force-sensing pathway are linked to the integrin-cytoskeleton complex at sites of force application and serve as scaffolds for signaling processes. Thus, early events in force detection are mechanically induced cytoskeletal changes that result in biochemical signals to mechanoresponsive pathways that then regulate cell form.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号