首页 | 本学科首页   官方微博 | 高级检索  
     


Congruent epidemic models for unstructured and structured populations: analytical reconstruction of a 2003 SARS outbreak
Authors:Bombardt John N
Affiliation:Institute for Defense Analyses, 4850 Mark Center Drive, Alexandria, VA 22311-1882, United States. jbombard@ida.org
Abstract:Both the threat of bioterrorism and the natural emergence of contagious diseases underscore the importance of quantitatively understanding disease transmission in structured human populations. Over the last few years, researchers have advanced the mathematical theory of scale-free networks and used such theoretical advancements in pilot epidemic models. Scale-free contact networks are particularly interesting in the realm of mathematical epidemiology, primarily because these networks may allow meaningfully structured populations to be incorporated in epidemic models at moderate or intermediate levels of complexity. Moreover, a scale-free contact network with node degree correlation is in accord with the well-known preferred mixing concept. The present author describes a semi-empirical and deterministic epidemic modeling approach that (a) focuses on time-varying rates of disease transmission in both unstructured and structured populations and (b) employs probability density functions to characterize disease progression and outbreak controls. Given an epidemic curve for a historical outbreak, this modeling approach calls for Monte Carlo calculations (that define the average new infection rate) and solutions to integro-differential equations (that describe outbreak dynamics in an aggregate population or across all network connectivity classes). Numerical results are obtained for the 2003 SARS outbreak in Taiwan and the dynamical implications of time-varying transmission rates and scale-free contact networks are discussed in some detail.
Keywords:Deterministic epidemic model   Scale-free network   Preferred mixing   Time-dependent transmission rate   SARS
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号