首页 | 本学科首页   官方微博 | 高级检索  
     


hSSB1 associates with and promotes stability of the BLM helicase
Authors:Laura V. Croft  Nicholas W. Ashton  Nicolas Paquet  Emma Bolderson  Kenneth J. O’Byrne  Derek J. Richard
Affiliation:1.School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute,Queensland University of Technology,Woolloongabba,Australia;2.Princess Alexandra Hospital,Woolloongabba,Australia
Abstract:

Background

Maintenance of genome stability is critical in human cells. Mutations in or loss of genome stability pathways can lead to a number of pathologies including cancer. hSSB1 is a critical DNA repair protein functioning in the repair and signalling of stalled DNA replication forks, double strand DNA breaks and oxidised DNA lesions. The BLM helicase is central to the repair of both collapsed DNA replication forks and double strand DNA breaks by homologous recombination.

Results

In this study, we demonstrate that hSSB1 and BLM helicase form a complex in cells and the interaction is altered in response to ionising radiation (IR). BLM and hSSB1 also co-localised at nuclear foci following IR-induced double strand breaks and stalled replication forks. We show that hSSB1 depleted cells contain less BLM protein and that this deficiency is due to proteasome mediated degradation of BLM. Consequently, there is a defect in recruitment of BLM to chromatin in response to ionising radiation-induced DSBs and to hydroxyurea-induced stalled and collapsed replication forks.

Conclusions

Our data highlights that BLM helicase and hSSB1 function in a dynamic complex in cells and that this complex is likely required for BLM protein stability and function.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号