首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evidence of temperature‐independent metabolic rates in diurnal Namib Desert tenebrionid beetles
Authors:Hilary M Lease  Mary K Seely  Duncan Mitchell
Institution:1. Brain Function Research Group, School of Physiology, Faculty of Health Science, University of the Witwatersrand, , Parktown, South Africa;2. Gobabeb Research and Training Centre, , Walvis Bay, Namibia
Abstract:To investigate whether the sensitivity to environmental temperature varies between nocturnal and diurnal species of tenebrionid beetle, the metabolic rates of three diurnal species (Onymacris plana Peringuey, Onymacris rugatipennis Haag and Physadesmia globosa Haag) and three nocturnal species (Epiphysa arenicola Penrith, Gonopus sp. and Stips sp.) of beetles from the Namib Desert are measured over a range of temperatures (15–40 °C) that are experienced by these beetles in their natural habitat. The diurnal species O. plana, O. rugatipennis and P. globosa exhibit temperature‐independent metabolic rates (mean Q10 = 1.2) within temperature ranges that are ecologically relevant for diurnal desert beetles (30–40 °C). Onymacris plana, in particular, has a 20–40 °C rate–temperature slope (0.007 log10 mL O2 h?1 g?1 °C?1; Q10 = 1.1) that is less than half that of the other five beetle species (0.022–0.063 log10 mL O2 h?1 g?1 °C?1; Q10 ranges from 1.3–1.9), suggesting that O. plana is more metabolically independent of temperature than the other nocturnal and diurnal tenebrionids being investigated. Animals with metabolic rates that are decoupled from body temperature (or ambient temperature) may have an ecological advantage that allows them to exploit thermal and spatial niches during extreme temperature conditions.
Keywords:Coleoptera  energetics  insect  metabolism  respiration  thermal
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号