首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The control of cellulose microfibril deposition in the cell wall of higher plants
Authors:Susette C Mueller  R Malcolm Brown Jr
Institution:(1) Department of Botany, University of North Carolina, 27514 Chapel Hill, NC, USA;(2) Present address: Biological Laboratories, Harvard University, 02138 Cambridge, MA, USA;(3) Present address: Department of Botany, University of Texas, 78712 Austin, TX, USA
Abstract:In maize (Zea mays L.) and pine (Pinus taeda L.) seedlings, cellulose microfibril impressions are present on freeze-fractured plasma membranes. It has been proposed that impressions of newly synthesized microfibrils are a record of the movement of terminal synthesizing complexes through the plasma membrane (Mueller and Brown, 1980, J. Cell Biol. 84, 315–326). The association of terminal complexes with the ends of microfibril impressions or with the ends of microfibrils torn through the membrane indicates the orientation of microfibril tips. Unidirectionally-oriented microfibril tips (all pointing in the same direction) are associated with the organized deposition of parallel arrays of microfibrils. Multidirectionally-oriented microfibril tips were observed in a cell in which microfibril deposition was unusually disorganized. Microfibril patterns around pit fields are asymmetric and resemble flow patterns. Unidirectionally-oriented tears are associated with these microfibrils. Although microfibril orientations are deflected around pit fields, the main axis of microfibril orientation is maintained across the surface of the cell. The hypothesis is proposed that the interaction of a flowing plasma membrane with microfibril synthesizing complexes in the plane of the membrane may result in unidirectional deposition and asymmetric microfibril impressions around pit fields.Some of this work has been published in preliminary form (Brown 1979)
Keywords:Cellulose microfibril deposition  Membrane flow  Pinus  Pit field  Zea
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号