首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Glucose transporter isoform-3-null heterozygous mutation causes sexually dimorphic adiposity with insulin resistance
Authors:Ganguly Amit  Devaskar Sherin U
Institution:Division of Neonatology and Developmental Biology, Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1752, USA.
Abstract:We examined male and female glucose transporter isoform-3 (GLUT3; placenta)-null heterozygous(+/-) mutation-carrying mice and compared them with age- and sex-matched wild-type(+/+) littermates. No difference in postnatal (1-2 days, 6-7 days, 12-13 days, 20-21 days), postsuckling (1-2 mo), and adult (3-6 mo) growth pattern was seen except for an increase in body weight of 9- to 11-mo-old male but not female GLUT3(+/-) mice. This change in male mutant mice was associated with increased total body fat mass, perirenal and epididymal white adipose tissue weight, and hepatic lipid infiltration. These minimally glucose-intolerant male mutant mice demonstrated no change in caloric intake but a decline in basal metabolic rate and insulin resistance. No perturbation in basal circulating glucose concentrations but an increase in insulin concentrations, triglycerides, and total cholesterol was observed in GLUT3(+/-) male mice. Tissue analysis in males and females demonstrated diminished GLUT3 protein in GLUT3(+/-) brain and skeletal muscle with no change in brain and adipose tissue GLUT1 protein concentrations. Furthermore, the male GLUT3(+/-) mice expressed decreased insulin-responsive GLUT4 in white adipose tissue and skeletal muscle sarcolemma. We conclude that the GLUT3(+/-) male mice develop adult-onset adiposity with insulin resistance.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号