首页 | 本学科首页   官方微博 | 高级检索  
     


Substrate recognition by UDP-galactose and CMP-sialic acid transporters. Different sets of transmembrane helices are utilized for the specific recognition of UDP-galactose and CMP-sialic acid
Authors:Aoki K  Ishida N  Kawakita M
Affiliation:Department of Physiological Chemistry, The Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan.
Abstract:Human UDP-galactose transporter (hUGT1) and CMP-sialic acid transporter (hCST) are related Golgi membrane proteins with 10 transmembrane helices. We have constructed chimeras between these proteins in order to identify submolecular regions responsible for the determination of substrate specificity. To assess the UGT and CST activities, chimeric cDNAs were transiently expressed in either UGT-deficient mutant Lec8 cells or CST-deficient mutant Lec2 cells, and the binding of plant lectins, GS-II or PNA, respectively, to these cells was examined. During the course of analysis of various chimeric transporters, we found that chimeras whose submolecular regions contained helices 1, 8, 9, and 10, and helices 2, 3, and 7 derived from hUGT1 and hCST sequences, respectively, exhibited both UGT and CST activities. The dual substrate specificity for UDP-galactose and CMP-sialic acid of one such representative chimera was directly confirmed by in vitro measurement of the nucleotide sugar transport activity using a heterologous expression system in the yeast Saccharomyces cerevisiae. These findings indicated that the regions which are critical for determining the substrate specificity of UGT and CST resided in different submolecular sites in the two transporters, and that these different determinants could be present within one protein without interfering with each other's function.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号