首页 | 本学科首页   官方微博 | 高级检索  
     


Role of extracellular Ca2+ in acetylcholine-induced repetitive Ca2+ release in submandibular gland acinar cells of the rat
Authors:W. Zhang  Y. Fukushi  A. Nishiyama  J. Wada  N. Kamimura  Y. Mio  M. Wakui
Abstract:Acetylcholine (ACh) caused repetitive transient Cl currents activated by intracellular Ca2+ in single rat submandibular grand acinar cells. As the concentration of ACh increased the amplitude and the frequency of the transient Cl currents increased. These responses occurred also in the absence of extracellular Ca2+ but disappeared after several minutes. Repetitive transient Cl currents were restored by readmission of Ca2+ to the extracellular solution. The higher the concentration of extracellular Ca2+ readmitted, the larger the amplitude of the transient Cl currents. Ca2+ entry through a store-coupled pathway was detected by application of Ca2+ to the extracellular solution during a brief cessation of stimulation with ACh. In these experiments too, the higher the concentration of Ca2+, the larger the transient Cl currents activated by Ca2+ released from the stores. The time course of decrease in total charge movements of repetitive transient responses to ACh with removal of extracellular Ca2+ depended on a decrease in charge movements of each transient event rather than a decrease in frequency of the repetitive events. The decrease of charge movements of each transient event was due to a decrease in its amplitude rather than its duration. The results suggest that in this cell type an amplitude-modulated mechanism is involved in repetitive Ca2+ release and that Ca2+ entry is essential to maintain the repetitive release of Ca2+. The results further suggest that the magnitude of Ca2+ entry determines the number of unitary stores filled with Ca2+ which can synchronously respond to ACh. © 1996 Wiley-Liss, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号