首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Endothelial cell oxidant generation during K+-induced membrane depolarization
Authors:Abu B Al-Mehdi  Harry Ischiropoulos  Aron B Fisher
Abstract:We tested the hypothesis that membrane depolarization may initiate oxidant generation in the endothelial cell. Depolarization was produced in bovine pulmonary arterial endothelial cells (BPAEC) in monolayer culture with varying external K+, or with glyburide (10 μM), tetraethylammonium (TEA, 10 mM), gramicidin (1 μM), or nigericin (2 μM). Evaluation of bisoxonol fluorescence of BPAEC indicated concentration-dependent depolarization by high K+ (2% change in fluorescence/mV change in membrane potential in the 5.9–48 mM range of K+) and essentially complete depolarization with glyburide. Generation of oxidants was assessed with o-phenylenediamine dihydrochloride (o-PD) oxidation in the presence of horseradish peroxidase (HRP). There was a time-dependent increase in o-PD oxidation with 24 mM K+, nigericin, and gramicidin over 2 hours compared with control. In 1 hour o-PD oxidation increased 2.8-fold for 24 mM and 3.7-fold for 48 mM K+ compared with control. Catalase reduced 24 mM K+-induced o-PD oxidation by 50%, while Cu/Zn-superoxide dismutase (SOD) abolished the increase. Oxidation of o-PD was reduced by 57% in the absence of HRP in the system. With K+ channel blockade, o-PD oxidation increased 3.8-fold with glyburide and 4.6-fold with TEA compared with control. These data indicate formation of H2O2 and possibly other oxidants with depolarization and suggest involvement of K+-channels in this process. © 1996 Wiley-Liss, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号