首页 | 本学科首页   官方微博 | 高级检索  
     


Reversible electrical breakdown of squid giant axon membrane
Authors:R Benz  F Conti
Abstract:Charge pulse relaxation experiments were performed on squid giant axon. In the low voltage range, the initial voltage across squid axon membrane was a linear function of the injected charge. For voltages of the order of 1 V this relationship between injected charge and voltage across the membrane changes abruptly. Because of a high conductance state caused by these large electric fields the voltage across the membrane cannot be made large enough to exceed a critical value, Vc, defined as the breakdown voltage, Vc has for squid axon membrane a value of 1.1 V at 12 degrees C. During breakdown the specific membrane conductance exceeds 1 S. cm-2. Electrical breakdown produced by charge pulses of few microseconds duration have no influence on the excitability of the squid axon membrane. The resealing process of the membrane is so fast that a depolarizing breakdown is followed by the falling phase of a normal action potential. Thus, membrane voltages close to Vc open the sodium channels in few microseconds, but do not produce a decrease of the time constant of potassium activation large enough to cause the opening of a significant percentage of channels in a time of about 10 mus. It is probable that the reversible electrical breakdown is mainly caused by mechanical instability produced by electrostriction of the membrane (electrochemical model), but the decrease in the Born energy for ion injection into the membrane, accompanying the decrease in membrane thickness, may play also an important role. Because of the high conductance of the membrane during breakdown it seems very likely that this results in pore formation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号