首页 | 本学科首页   官方微博 | 高级检索  
     


A retrograde signal from calsequestrin for the regulation of store-operated Ca2+ entry in skeletal muscle
Authors:Shin Dong Wook  Pan Zui  Kim Eun Kyung  Lee Jae Man  Bhat Manjunatha B  Parness Jerome  Kim Do Han  Ma Jianjie
Affiliation:Department of Life Science, Kwangju Institute of Science and Technology, Kwangju, 500-712, Korea.
Abstract:Calsequestrin (CSQ) is a high capacity Ca(2+)-binding protein present in the lumen of sarcoplasmic reticulum (SR) in striated muscle cells and has been shown to regulate the ryanodine receptor Ca(2+) release channel activity through interaction with other proteins present in the SR. Here we show that overexpression of wild-type CSQ or a CSQ mutant lacking the junction binding region (amino acids 86-191; Delta junc-CSQ) in mouse skeletal C2C12 myotube enhanced caffeine- and voltage-induced Ca(2+) release by increasing the Ca(2+) load in SR, whereas overexpression of a mutant CSQ lacking a Ca(2+) binding, aspartate-rich domain (amino acids 352-367; Delta asp-CSQ) showed the opposite effects. Depletion of SR Ca(2+) by thapsigargin initiated store-operated Ca(2+) entry (SOCE) in C2C12 myotubes. A large component of SOCE was inhibited by overexpression of wild-type CSQ or Delta junc-CSQ, whereas myotubes transfected with Delta asp-CSQ exhibited normal function of SOCE. These results indicate that the aspartate-rich segment of CSQ, under conditions of overexpression, can sustain structural interactions that interfere with the SOCE mechanism. Such retrograde activation mechanisms are possibly taking place at the junctional site of the SR.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号