首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The dissociation of exocytosis and respiratory stimulation in leucocytes by ionophores.
Authors:G Zabucchi and  D Romeo
Abstract:By exploiting the unique characteristics of three ionophores, experimental conditions were found which permit the dissociation of respiratory stimulation from secretion in polymorphonuclear leucocytes. A marked stimulation of respiration was produced by ionophore X537A, which binds and transports both alkali-earth and alkali cations. The stimulatory activity of this ionophore was the same at either high or low Na+/K+ ratios in the medium and was virtually unaffected by extracellular Ca2+. A slight stimulation of oxygen consumption was also caused by the K+-selective ionophore valinomycin and by ionophore A23187, which complexes and transfers bivalent cations. Ionophore X537A and valinomycin were unable to stimulate selective release of granuleassociated beta-glucuronidase and gradually increased cell fragility, as monitored by increased leakage of lactate dehydrogenase. Ionophore A23187 slightly increased exocytosis of beta-glucuronidase. In a Mg2+-free medium, Ca2+, added simultaneously with ionophore A23187, greatly enhanced respiration and secretion of the granule enzyme. If Ca2+ was added a few minutes after the ionophore, exocytosis occurred, but no respiratory burst was observed. If the latter experiment was repeated in the presence of extracellular Mg2+, both secretion and respiration were stimulated. This effect was not produced by Mn2+ or Ba2+. It is proposed that Ca2+ is required for triggering selective secretion of granule enzymes from leucocytes is caused by an intracellular redistribution of cations, which may invovle Mg2+-dependent mechanisms.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号