Glyphosate catabolism by Pseudomonas sp. strain PG2982. |
| |
Authors: | D L Shinabarger and H D Braymer |
| |
Abstract: | The pathway for the degradation of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. PG2982 has been determined by using metabolic radiolabeling experiments. Radiorespirometry experiments utilizing [3-14C]glyphosate revealed that approximately 50 to 59% of the C-3 carbon was oxidized to CO2. Fractionation of stationary-phase cells labeled with [3-14C]glyphosate revealed that from 45 to 47% of the assimilated label is distributed to proteins and that the amino acids methionine and serine are highly labeled. Adenine and guanine received 90% of the C-3 label found in the nucleic acid fraction, and the only pyrimidine base labeled was thymine. These results indicated that C-3 of glyphosate was at some point metabolized to a C-1 compound whose ultimate fate could be both oxidation to CO2 and distribution to amino acids and nucleic acid bases that receive a C-1 group from the C-1-donating coenzyme tetrahydrofolate. Pulse-labeling of PG2982 cells with [3-14C]glyphosate resulted in the isolation of [3-14C]sarcosine as an intermediate in glyphosate degradation. Examination of crude extracts prepared from PG2982 cells revealed the presence of a sarcosine-oxidizing enzyme that oxidizes sarcosine to glycine and formaldehyde. These results indicate that the first step in glyphosate degradation by PG2982 is cleavage of the carbon-phosphorus bond, resulting in the release of sarcosine and a phosphate group. The phosphate group is utilized as a source of phosphorus, and the sarcosine is degraded to glycine and formaldehyde. This pathway is supported by the results of [1,2-14C]glyphosate metabolism studies, which show that radioactivity in the proteins of labeled cells is found only in the glycine and serine residues. |
| |
Keywords: | |
|
|