首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chromosome demise in the wake of ligase-deficient replication
Authors:Kouzminova Elena A  Kuzminov Andrei
Institution:Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3709, USA.
Abstract:Bacterial DNA ligases, NAD+‐dependent enzymes, are distinct from eukaryotic ATP‐dependent ligases, representing promising targets for broad‐spectrum antimicrobials. Yet, the chromosomal consequences of ligase‐deficient DNA replication, during which Okazaki fragments accumulate, are still unclear. Using ligA251(Ts), the strongest ligase mutant of Escherichia coli, we studied ligase‐deficient DNA replication by genetic and physical approaches. Here we show that replication without ligase kills after a short resistance period. We found that double‐strand break repair via RecA, RecBCD, RuvABC and RecG explains the transient resistance, whereas irreparable chromosomal fragmentation explains subsequent cell death. Remarkably, death is mostly prevented by elimination of linear DNA degradation activity of ExoV, suggesting that non‐allelic double‐strand breaks behind replication forks precipitate DNA degradation that enlarge them into allelic double‐strand gaps. Marker frequency profiling of synchronized replication reveals stalling of ligase‐deficient forks with subsequent degradation of the DNA synthesized without ligase. The mechanism that converts unsealed nicks behind replication forks first into repairable double‐strand breaks and then into irreparable double‐strand gaps may be behind lethality of any DNA damaging treatment.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号