首页 | 本学科首页   官方微博 | 高级检索  
   检索      


SSALN: an alignment algorithm using structure-dependent substitution matrices and gap penalties learned from structurally aligned protein pairs
Authors:Qiu Jian  Elber Ron
Institution:Department of Computer Science, Cornell University, Ithaca, New York 14853, USA.
Abstract:In template-based modeling of protein structures, the generation of the alignment between the target and the template is a critical step that significantly affects the accuracy of the final model. This paper proposes an alignment algorithm SSALN that learns substitution matrices and position-specific gap penalties from a database of structurally aligned protein pairs. In addition to the amino acid sequence information, secondary structure and solvent accessibility information of a position are used to derive substitution scores and position-specific gap penalties. In a test set of CASP5 targets, SSALN outperforms sequence alignment methods such as a Smith-Waterman algorithm with BLOSUM50 and PSI_BLAST. SSALN also generates better alignments than PSI_BLAST in the CASP6 test set. LOOPP server prediction based on an SSALN alignment is ranked the best for target T0280_1 in CASP6. SSALN is also compared with several threading methods and sequence alignment methods on the ProSup benchmark. SSALN has the highest alignment accuracy among the methods compared. On the Fischer's benchmark, SSALN performs better than CLUSTALW and GenTHREADER, and generates more alignments with accuracy >50%, >60% or >70% than FUGUE, but fewer alignments with accuracy >80% than FUGUE. All the supplemental materials can be found at http://www.cs.cornell.edu/ approximately jianq/research.htm.
Keywords:alignment accuracy  secondary structure  relative solvent accessibility  position‐specific gap penalties  structurally aligned protein pairs
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号