首页 | 本学科首页   官方微博 | 高级检索  
     


Neuronal regulation by which microglia enhance the production of neurotrophic factors for GABAergic, catecholaminergic, and cholinergic neurons
Authors:Nakajima Kazuyuki  Tohyama Yoko  Maeda Shyuichi  Kohsaka Shinichi  Kurihara Tadashi
Affiliation:Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan. nakajima@t.soka.ac.jp
Abstract:A phenomenon-in which microglia are activated in axotomized rat facial nucleus suggests that a certain neuronal stimulus triggers the activation of microglia. However, how the microglial characteristics are regulated by this neuronal stimulus has not previously been determined. In this study, therefore, the regulation of microglial properties by neurons was characterized in vitro from a neurotrophic perspective. To evaluate the neurotrophic effects of microglia stimulated with neurons, the effects of conditioned medium (CM) of microglia stimulated with neuronal CM (NCM) were assessed in neuronal cultures. The amounts of tyrosine hydroxylase (TH) in neuronal culture exposed to CM of microglia stimulated with NCM was much more than those in neurons exposed to CM of control microglia, suggesting that neuronal stimulus enhances the production of neurotrophic factors for catecholaminergic neurons in microglia. Therefore, the neurotrophic effects of CM of microglia stimulated with NCM were analyzed in detail. The immunocytochemical and biochemical experiments revealed that the CM of microglia stimulated with NCM enhances the survival/maturation of GABAergic and catecholaminergic neurons. The levels of choline acetyltransferase specific to cholinergic neurons also significantly increased in response to stimulation with the same microglial CM. These results allowed us to investigate the production of neurotrophic factors in the CM of microglia stimulated with NCM. The results indicated that NCM induces nerve growth factor (NGF), and enhances neurotrophin-4/5 (NT-4/5), transforming growth factor beta1 (TGFbeta1), glial cell line-derived neurotrophic factor (GDNF), fibroblast growth factor 2 (FGF2), interleukin-3 (IL-3), and IL-10 in microglia. The promoted neurotrophic effects of CM of microglia stimulated with NCM were significantly abrogated by deprivation of neurotrophic factors by means of an immunoprecipitation method. Taken together, neuronal stimulus was found to activate microglia to produce more neurotrophic factors as above, thereby changing microglia into more neurotrophic cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号