首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biosynthesis of N-glycosidically linked glycoproteins during gastrulation of sea urchin embryos.
Authors:A Heifetz  W J Lennarz
Abstract:Embryos of the sea urchin, Stronglyocentrotus purpuratus, synthesize several classes of sulfated and non-sulfated glycoproteins during gastrulation. The antibiotic tunicamycin, which is a specific inhibitor of the N-glycosylation of proteins, inhibits the synthesis of lipid-linked oligosaccharides in these embryos at concentrations which have little effect on the biosynthesis of other classes of glycolipids or on protein synthesis. As a consequence of this inhibition, glycoproteins with oligosaccharide side chains of the general type (Man)5-7-(GlcNAc)2 are not synthesized. In addition, the biosynthesis of a novel class of sulfated glycoproteins is inhibited. In contrast, no effect upon the synthesis of sulfated glycosaminoglycans is seen. The morphogenetic consequence of tunicamycin treatment is that development of embryos from the mesenchyme blastula to the gastrula stage is arrested. The results provide evidence that during development glycoproteins containing both unsulfated and sulfated N-glycosidically linked oligosaccharide chains are synthesized via the lipid-linked pathway. The biosynthesis of these molecules appears to be a prerequisite to the differentiation and morphogenesis that occurs during gastrulation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号