首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Yeast a1 and α2 Homeodomain Proteins Do Not Contribute Equally to Heterodimeric DNA Binding
Authors:Yisheng Jin  Hualin Zhong  and Andrew K Vershon
Abstract:In diploid cells of the yeast Saccharomyces cerevisiae, the α2 and a1 homeodomain proteins bind cooperatively to sites in the promoters of haploid cell-type-specific genes (hsg) to repress their expression. Although both proteins bind to the DNA, in the α2 homeodomain substitutions of residues that are involved in contacting the DNA have little or no effect on repression in vivo or cooperative DNA binding with a1 protein in vitro. This result brings up the question of the contribution of each protein in the heterodimer complex to the DNA-binding affinity and specificity. To determine the requirements for the a1-α2 homeodomain DNA recognition, we systematically introduced single base-pair substitutions in an a1-α2 DNA-binding site and examined their effects on repression in vivo and DNA binding in vitro. Our results show that nearly all substitutions that significantly decrease repression and DNA-binding affinity are at positions which are specifically contacted by either the α2 or a1 protein. Interestingly, an α2 mutant lacking side chains that make base-specific contacts in the major groove is able to discriminate between the wild-type and mutant DNA sites with the same sequence specificity as the wild-type protein. These results suggest that the specificity of α2 DNA binding in complex with a1 does not rely solely on the residues that make base-specific contacts. We have also examined the contribution of the a1 homeodomain to the binding affinity and specificity of the complex. In contrast to the lack of a defective phenotype produced by mutations in the α2 homeodomain, many of the alanine substitutions of residues in the a1 homeodomain have large effects on a1-α2-mediated repression and DNA binding. This result shows that the two proteins do not make equal contributions to the DNA-binding affinity of the complex.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号