首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structural characterization of the ATP-hydrolyzing portion of the coated vesicle proton pump
Authors:M Forgac  M Berne
Abstract:The ATP-hydrolyzing portion of the proton pump from clathrin-coated vesicles (isolated from calf brain) was solubilized with three nondenaturing detergents (cholate, octyl glucoside, and Triton X-100). The hydrodynamic properties of the solubilized (Mg2+)-ATPase were then determined by sedimentation analysis in H2O and D2O and gel filtration on Sepharose 4B. The coated vesicle (Mg2+)-ATPase migrated under all conditions as a single peak of activity. In cholate, the sedimentation coefficient (S20,w), Stokes radius (a), and partial specific volume (vc) were 8.25 (+/- 0.20) S, 68 (+/- 2) A, and 0.71 (+/- 0.03) cm3/g, respectively. In octyl glucoside and Triton X-100 these values were respectively 7.90 (+/- 0.20) and 7.45 (+/- 0.20) S, 68 (+/- 3) and 101 (+/- 5) A, and 0.74 (+/- 0.03) and 0.75 (+/- 0.03) cm3/g. Application of the Svedberg equation to these data gave a molecular weight for the protein-detergent complex of 217,000 +/- 21,000 (cholate), 234,000 +/- 26,000 (octyl glucoside), and 337,000 +/- 40,000 (Triton X-100). Assuming the protein binds one micelle of detergent, these values correspond to a protein molecular weight of 215,000 +/- 21,000 (cholate), 226,000 +/- 26,000 (octyl glucoside), and 247,000 +/- 40,000 (Triton X-100). The cholate-solubilized, gradient-purified (Mg2+)-ATPase, when combined with a 100,000 g pellet fraction, could be reconstituted by dialysis into phospholipid vesicles which displayed ATP-dependent proton uptake.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号