首页 | 本学科首页   官方微博 | 高级检索  
   检索      


In vivo post-translational processing and subunit reconstitution of cephalosporin acylase from Pseudomonas sp. 130.
Authors:Y Li  J Chen  W Jiang  X Mao  G Zhao  E Wang
Institution:State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry, Academia Sinica, China.
Abstract:Cephalosporin acylases are a group of enzymes that hydrolyze cephalosporin C (CPC) and/or glutaryl 7-amino cephalosporanic acid (GL-7ACA) to produce 7-amino cephalosporanic acid (7-ACA). The acylase from Pseudomonas sp. 130 (CA-130) is highly active on GL-7ACA and glutaryl 7-aminodesacetoxycephalosporanic acid (GL-7ADCA), but much less active on CPC and penicillin G. The gene encoding the enzyme is expressed as a precursor polypeptide consisting of a signal peptide followed by alpha- and beta-subunits, which are separated by a spacer peptide. Removing the signal peptide has little effect on precursor processing or enzyme activity. Substitution of the first residue of the beta-subunit, Ser, results in a complete loss of enzyme activity, and substitution of the last residue of the spacer, Gly, leads to an inactive and unprocessed precursor. The precursor is supposed to be processed autocatalytically, probably intramolecularly. The two subunits of the acylase, which separately are inactive, can generate enzyme activity when coexpressed in Escherichia coli. Data on this and other related acylases indicate that the cephalosporin acylases may belong to a novel class of enzymes (N-terminal nucleophile hydrolases) described recently.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号