首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Matrix metalloproteinase triple-helical peptidase activities are differentially regulated by substrate stability
Authors:Minond Dmitriy  Lauer-Fields Janelle L  Nagase Hideaki  Fields Gregg B
Institution:Department of Chemistry and Biochemistry, Florida Atlantic University,777 Glades Road, Boca Raton, Florida 33431-0991, USA.
Abstract:Matrix metalloproteinases (MMPs) are involved in physiological remodeling as well as pathological destruction of tissues. The turnover of the collagen triple-helical structure has been ascribed to several members of the MMP family, but the determinants for collagenolytic specificity have not been identified. The present study has compared the triple-helical peptidase activities of MMP-1 and MMP-14 (membrane-type 1 MMP; MT1-MMP). The ability of each enzyme to efficiently hydrolyze the triple helix was quantified using chemically synthesized fluorogenic triple-helical substrates that, via addition of N-terminal alkyl chains, differ in their thermal stabilities. One series of substrates was modeled after a collagenolytic MMP consensus cleavage site from types I-III collagen, while the other series had a single substitution in the P(1)' subsite of the consensus sequence. The substitution of Cys(4-methoxybenzyl) for Leu in the P(1)' subsite was greatly favored by MMP-14 but disfavored by MMP-1. An increase in substrate triple-helical thermal stability led to the decreased ability of the enzyme to cleave such substrates, but with a much more pronounced effect for MMP-1. Increased thermal stability was detrimental to enzyme turnover of substrate (k(cat)), but not binding (K(M)). Activation energies were considerably lower for MMP-14 hydrolysis of triple-helical substrates compared with MMP-1. Overall, MMP-1 was found to be less efficient at processing triple-helical structures than MMP-14. These results demonstrate that collagenolytic MMPs have subtle differences in their abilities to hydrolyze triple helices and may explain the relative collagen specificity of MMP-1.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号