Abstract: | Studies were undertaken to characterize the beta-glucosidase activity in freshly homogenized liver from Sprague-Dawley rats. About 95% of the total beta-glucosidase activity was associated with the particulate fraction, whereas only about 3-7% was found in the cytosol. Storage of fresh liver at room temperature for several hours or repeated freezing and thawing of fresh rat liver prior to homogenization, solubilized 20-30% of the total hepatic beta-glucosidase activity. An additional 30% could be solubilized by extracting the particulate sediments with water or Triton X-100. The enzymatic activity in both the particulate and solubilized fractions optimally hydrolyzed 4-methylumbelliferyl-beta-D-glucoside as well as the glycolipid substrate, glucosylceramide, at an acidic pH. The rates of hydrolysis of either substrate by all subcellular fractions were stimulated by addition of sodium taurocholate or phosphatidylserine. The particulate, cytosolic and solubilized enzymes bound to concanavalin A, were inhibited by conduritol B epoxide and migrated more electronegatively on cellulose acetate than the cytosolic acid beta-glucosidase from human liver or spleen. These data indicated that the liver of Sprague-Dawley rats contained primarily the lysosomal acid beta-glucosidase ('glucocerebrosidase') and little, if any, 'nonspecific' beta-glucosidase. This, and the fact that about 60% of the rat hepatic beta-glucosidase could be solubilized by autolysis, freezing and rethawing or extraction with water, contrasts with the beta-glucosidases in human liver since about 80% of the total beta-glucosidase activity is cytosolic and does not hydrolyze glucosylceramide.(ABSTRACT TRUNCATED AT 250 WORDS) |