首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Methane and oxygen dynamics in a shallow floodplain lake: the significance of periodic stratification
Authors:Phillip W Ford  Paul I Boon  Kerrie Lee
Institution:(1) CSIRO Land and Water, G.P.O. Box 1666, Canberra, ACT, 2601, Australia;(2) School of Life Sciences and Technology, Victoria University, St. Albans Campus, P.O. Box 14428, Melbourne City Mail Centre, Melbourne, VIC, 8001, Australia;(3) Murray-Darling Freshwater Research Centre, and Co-operative Research Centre for Freshwater Ecology, P.O. Box 921, Albury, NSW, 2640, Australia
Abstract:Temperature, dissolved oxygen and dissolved methane profiles were measured during autumn and summer, in a shallow floodplain lake in south-eastern Australia to determine the effects of water-column stability on methane and oxygen dynamics. The water column was well mixed in autumn. Strong thermal stratification developed in the late afternoon in summer, with top-to-bottom temperature differences of up to sim6thinsp °C. Methane concentrations in surface waters varied over a daily cycle by an 18-fold range in summer, but only by a 2-fold range in autumn. The implication of short-term temporal variation is that static chambers deployed on the water surface for short times (less than a day) in summer will significantly underestimate the diffusive component of methane emissions across the water–atmosphere interface. There was a marked diel variation in dissolved oxygen concentrations in summer, with the highest oxygen values (commonly 5–8 mg l–1) occurring in the surface waters in late afternoon; the bottom waters were then devoid of oxygen (< 0.2 mg l–1). Because of high respiratory demands, even the surface water layers could be nearly anoxic by morning in summer. The concentration of dissolved oxygen in the surface waters was always less than the equilibrium value. When the water column became thermally stratified in summer, the dissolved oxygen and methane maxima were spatially separated, and planktonic methanotrophy would be limited to a moving zone, at variable depth, in the water column. In summer the whole-wetland rates of oxygen production and respiration, calculated from long-term (sim5 h) shifts in dissolved oxygen concentrations over a diel period, were approximately 6–10 and 3–6 mmol m–3 h–1, respectively. These values correspond to net and gross primary production rates of sim0.7–1.2 and sim1.0–1.9 g C m–3 day–1, respectively.
Keywords:billabong  floodplain  greenhouse gas  oxbow lake  thermal stratification  wetland
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号