首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Differentiation of natural killer cells from induced pluripotent stem cells under defined,serum- and feeder-free conditions
Institution:1. Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, USA;2. Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA;3. Purdue Center for Cancer Research, West Lafayette, Indiana, USA;1. Nationwide Children''s Hospital, Center for Childhood Cancer and Blood Diseases, Columbus, Ohio, USA;2. Thermo Fisher Scientific, Frederick, Maryland, USA;3. Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
Abstract:Background aimsTraditionally, natural killer (NK) cells are sourced from the peripheral blood of donors―a laborious and highly donor-specific process. Processes for generating NK cells from induced pluripotent stem cells (iPSCs) have demonstrated that it is possible to successfully generate renewable alloreactive NK cells that are not only functional in vivo but can also be genetically engineered for enhanced function. However, poor standardization and cumbersome differentiation procedures suggest that further improvements in the control of the differentiation process are necessary.MethodsHere the authors evaluated the potential of differentiating NK cells from centrally authenticated iPSCs under entirely chemically defined and serum-free conditions as well as their immunotherapeutic potential, after expansion in feeder-free media, against solid tumors targets. To address limitations of current differentiation approaches, the authors did not utilize feeder or stromal cell layers, TrypLE adaptation or peripheral blood during the differentiation process. The authors also evaluated the feasibility of utilizing centrally authenticated iPSC lines, thus circumventing protocol- and donor-induced variability associated with reprogramming approaches, and characterized these iPSC-NK cells in terms of cytotoxicity, cytokine production and degranulation potential against solid tumor cell lines and patient-derived targets.ResultsDifferentiation of iPSCs generated NK cells that were predominantly CD56+/CD16+/CD3 and expressed NK activation markers NKG2D, NKp30, NKp44, NKp46 and DNAM-1. These iPSC-NK cells mediated effector functions, including cytotoxicity, degranulation and IFN-γ production, in response to solid tumor targets, including patient-derived cancer cells, and could be cryopreserved and expanded in culture.ConclusionsThe ability to produce NK cells under defined conditions and the functional responses elicited by these iPSC-NK cells suggest that they could represent promising effectors in clinical adoptive transfer settings as a renewable source of donor-independent NK cells for immunotherapy of solid tumors.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号