首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of using the unloaded configuration in predicting the in vivo diastolic properties of the heart
Authors:Amir Nikou  Shauna M. Dorsey  Jeremy R. McGarvey  Joseph H. Gorman III  Jason A. Burdick  James J. Pilla
Affiliation:1. Department of Mechanical Engineering, University of Kentucky, Lexington, KY, USA;2. Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA;3. Gorman Cardiovascular Research Group and Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA;4. Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
Abstract:Computational models are increasingly being used to investigate the mechanical properties of cardiac tissue. While much insight has been gained from these studies, one important limitation associated with computational modeling arises when using in vivo images of the heart to generate the reference state of the model. An unloaded reference configuration is needed to accurately represent the deformation of the heart. However, it is rare for a beating heart to actually reach a zero-pressure state during the cardiac cycle. To overcome this, a computational technique was adapted to determine the unloaded configuration of an in vivo porcine left ventricle (LV). In the current study, in vivo measurements were acquired using magnetic resonance images (MRI) and synchronous pressure catheterization in the LV (N = 5). The overall goal was to quantify the effects of using early–diastolic filling as the reference configuration (common assumption used in modeling) versus using the unloaded reference configuration for predicting the in vivo properties of LV myocardium. This was accomplished by using optimization to minimize the difference between MRI measured and finite element predicted strains and cavity volumes. The results show that when using the unloaded reference configuration, the computational method predicts material properties for LV myocardium that are softer and less anisotropic than when using the early-diastolic filling reference configuration. This indicates that the choice of reference configuration could have a significant impact on capturing the realistic mechanical response of the heart.
Keywords:Finite element modeling  optimization  left ventricle  passive myocardium
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号