首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sodium-dependent Potassium Channels in Leech P Neurons
Authors:G?Klees  Email author" target="_blank">P?HochstrateEmail author  PW?Dierkes
Institution:1.Institut für Neurobiologie,Heinrich-Heine-Universit?t Düsseldorf,Germany
Abstract:In leech P neurons the inhibition of the Na+-K+ pump by ouabain or omission of bath K+ leaves the membrane potential unaffected for a prolonged period or even induces a marked membrane hyperpolarization, although the concentration gradients for K+ and Na+ are attenuated substantially. As shown previously, this stabilization of the membrane potential is caused by an increase in the K+ conductance of the plasma membrane, which compensates for the reduction of the K+ gradient. The data presented here strongly suggest that the increased K+ conductance is due to Na+-activated K+ (KNa) channels. Specifically, an increase in the cytosolic Na+ concentration (Na+]i) was paralleled by a membrane hyperpolarization, a decrease in the input resistance (Rin) of the cells, and by the occurrence of an outwardly directed membrane current. The relationship between Rin and Na+]i followed a simple model in which the Rin decrease was attributed to K+ channels that are activated by the binding of three Na+ ions, with half-maximal activation at Na+]i between 45 and 70 mM. At maximum channel activation, Rin was reduced by more than 90%, suggesting a significant contribution of the KNa channels to the physiological functioning of the cells, although evidence for such a contribution is still lacking. Injection experiments showed that the KNa channels in leech P neurons are also activated by Li+.
Keywords:KNa channels  Na+-K+ pump  Leech  P neuron  Retzius neuron  Ion-sensitive microelectrodes
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号