首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Water relations of growing pea epicotyl segments
Authors:Daniel Cosgrove  Ernst Steudle
Institution:(1) Arbeitsgruppe Membranforschung am Institut für Medizin, Kernforschungsanlage Jülich GmbH, Postfach 1913, D-5170 Jülich, Federal Republic of Germany;(2) Present address: Department of Botany, University of Washington, 98195 Seattle, WA, USA
Abstract:The water relations of growing epicotyl segments of pea (Pisum sativum L.) were studied using the miniaturized pressure probe. For epidermal cells stationary turgor pressures of P=5 to 9 bar and half-times of water exchange of individual cells T 1/2=1 to 27 s were found. The volumetric clastic modulus (epsiv) of epidermal cells varied from 12 to 200 bar and the hydraulic conductivity, Lp=0.2 to 2·10-6 cm s-1 bar-1. For cortical cells P=5 to 11 bar, T 1/2=0.3 to 1 s, Lp=0.4 to 9·10-5 cm s-1 bar-1 and epsiv=6 to 215 bar. The T 1/2 of cortical cells was extremely low and the Lp rather high as compared to other higher plant cells. The T 1/2-values of cortical cells were sometimes observed to change from short to substantially longer values (T 1/2=3 to 20 s). Both short and long pressure relaxations showed all the characteristics of non-artifactual curves. The change is apparently due to an increase in Lp and not epsiv, but the reason for the change in cell permeability to water is not known.In osmotic exchange experiments on peeled segments using solutions of different solutes, the half-time of osmotic water exchange for the whole segment was approximately 60 s. Water exchange occurred too quickly to be rate controlled by solute diffusion in the wall space. The data suggest that the short T 1/2-values in the cortical cells are the physiologically relevant ones for the intact tissue and that a considerable component of water transport occurs in the cell-to-cell pathway, although unstirred layer effects at the boundary between the segment and solution may influence the measured half-time. Using the theory of Molz and Boyer (1978, Plant Physiol. 62, 423–429), the gradient in water potential necessary to maintain the uptake of water for cell enlargement can be calculated from the measured diffusivities to be approximately 0.2 and 1 bar for growth rates of 1% h-1 and 5% h-1, respectively. Thus, although the T 1/2-values are short and Lp rather high, there may be a significant osmotic disequilibrium in the most rapidly growing tissue and as a consequence the influence of water transport on the growth rate cannot be excluded.Abbreviations P turgor pressure - T 1/2 half-time of water exchange of individual cell - Lp hydraulic conductivity - epsiv volumetric elastic modulus - t 1/2 average half-time of water exchange of tissue
Keywords:Cell wall (elasticity)  Growth (elongation)  Epicotyl  Hydraulic conductivity  Pisum  Water transport
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号